50 research outputs found

    Qualitative modelling and analysis of regulations in multi-cellular systems using Petri nets and topological collections

    Get PDF
    In this paper, we aim at modelling and analyzing the regulation processes in multi-cellular biological systems, in particular tissues. The modelling framework is based on interconnected logical regulatory networks a la Rene Thomas equipped with information about their spatial relationships. The semantics of such models is expressed through colored Petri nets to implement regulation rules, combined with topological collections to implement the spatial information. Some constraints are put on the the representation of spatial information in order to preserve the possibility of an enumerative and exhaustive state space exploration. This paper presents the modelling framework, its semantics, as well as a prototype implementation that allowed preliminary experimentation on some applications.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005

    Alignment between PIN1 Polarity and Microtubule Orientation in the Shoot Apical Meristem Reveals a Tight Coupling between Morphogenesis and Auxin Transport

    Get PDF
    Morphogenesis during multicellular development is regulated by intercellular signaling molecules as well as by the mechanical properties of individual cells. In particular, normal patterns of organogenesis in plants require coordination between growth direction and growth magnitude. How this is achieved remains unclear. Here we show that in Arabidopsis thaliana, auxin patterning and cellular growth are linked through a correlated pattern of auxin efflux carrier localization and cortical microtubule orientation. Our experiments reveal that both PIN1 localization and microtubule array orientation are likely to respond to a shared upstream regulator that appears to be biomechanical in nature. Lastly, through mathematical modeling we show that such a biophysical coupling could mediate the feedback loop between auxin and its transport that underlies plant phyllotaxis

    A Quantitative and Dynamic Model for Plant Stem Cell Regulation

    Get PDF
    Plants maintain pools of totipotent stem cells throughout their entire life. These stem cells are embedded within specialized tissues called meristems, which form the growing points of the organism. The shoot apical meristem of the reference plant Arabidopsis thaliana is subdivided into several distinct domains, which execute diverse biological functions, such as tissue organization, cell-proliferation and differentiation. The number of cells required for growth and organ formation changes over the course of a plants life, while the structure of the meristem remains remarkably constant. Thus, regulatory systems must be in place, which allow for an adaptation of cell proliferation within the shoot apical meristem, while maintaining the organization at the tissue level. To advance our understanding of this dynamic tissue behavior, we measured domain sizes as well as cell division rates of the shoot apical meristem under various environmental conditions, which cause adaptations in meristem size. Based on our results we developed a mathematical model to explain the observed changes by a cell pool size dependent regulation of cell proliferation and differentiation, which is able to correctly predict CLV3 and WUS over-expression phenotypes. While the model shows stem cell homeostasis under constant growth conditions, it predicts a variation in stem cell number under changing conditions. Consistent with our experimental data this behavior is correlated with variations in cell proliferation. Therefore, we investigate different signaling mechanisms, which could stabilize stem cell number despite variations in cell proliferation. Our results shed light onto the dynamic constraints of stem cell pool maintenance in the shoot apical meristem of Arabidopsis in different environmental conditions and developmental states

    Multiscale modelling of auxin transport in the plant-root elongation zone

    Get PDF
    In the root elongation zone of a plant, the hormone auxin moves in a polar manner due to active transport facilitated by spatially distributed influx and efflux carriers present on the cell membranes. To understand how the cell-scale active transport and passive diffusion combine to produce the effective tissue-scale flux, we apply asymptotic methods to a cell-based model of auxin transport to derive systematically a continuum description from the spatially discrete one. Using biologically relevant parameter values, we show how the carriers drive the dominant tissue-scale auxin flux and we predict how the overall auxin dynamics are affected by perturbations to these carriers, for example, in knockout mutants. The analysis shows how the dominant behaviour depends on the cells' lengths, and enables us to assess the relative importance of the diffusive auxin flux through the cell wall. Other distinguished limits are also identified and their potential roles discussed. As well as providing insight into auxin transport, the study illustrates the use of multiscale (cell to tissue) methods in deriving simplified models that retain the essential biology and provide understanding of the underlying dynamics

    Noise and Robustness in Phyllotaxis

    Get PDF
    A striking feature of vascular plants is the regular arrangement of lateral organs on the stem, known as phyllotaxis. The most common phyllotactic patterns can be described using spirals, numbers from the Fibonacci sequence and the golden angle. This rich mathematical structure, along with the experimental reproduction of phyllotactic spirals in physical systems, has led to a view of phyllotaxis focusing on regularity. However all organisms are affected by natural stochastic variability, raising questions about the effect of this variability on phyllotaxis and the achievement of such regular patterns. Here we address these questions theoretically using a dynamical system of interacting sources of inhibitory field. Previous work has shown that phyllotaxis can emerge deterministically from the self-organization of such sources and that inhibition is primarily mediated by the depletion of the plant hormone auxin through polarized transport. We incorporated stochasticity in the model and found three main classes of defects in spiral phyllotaxis – the reversal of the handedness of spirals, the concomitant initiation of organs and the occurrence of distichous angles – and we investigated whether a secondary inhibitory field filters out defects. Our results are consistent with available experimental data and yield a prediction of the main source of stochasticity during organogenesis. Our model can be related to cellular parameters and thus provides a framework for the analysis of phyllotactic mutants at both cellular and tissular levels. We propose that secondary fields associated with organogenesis, such as other biochemical signals or mechanical forces, are important for the robustness of phyllotaxis. More generally, our work sheds light on how a target pattern can be achieved within a noisy background

    Meristemas: fontes de juventude e plasticidade no desenvolvimento vegetal

    Full text link

    Quantifying Cell Shape and Gene Expression in the Shoot Apical Meristem Using MorphoGraphX

    No full text
    Confocal microscopy is a technique widely used to live-image plant tissue. Cells can be visualized by using fluorescent probes that mark the cell wall or plasma membrane. This enables the confocal microscope to be used as a 3D scanner with submicron precision. Here we present a protocol using the 3D image processing software MorphoGraphX (http://​www.​MorphoGraphX.​org) to extract the surface geometry and cell shapes in the shoot apex. By segmenting cells over consecutive time points, precise growth maps of the shoot apex can be produced. It is also possible to tag a protein of interest with a fluorescent marker and quantify protein expression at the cellular level. Key word

    Genetic control of plant development by overriding a geometric division rule

    Get PDF
    Formative cell divisions are critical for multicellular patterning. In the early plant embryo, such divisions follow from orienting the division plane. A major unanswered question is how division plane orientation is genetically controlled, and in particular whether this relates to cell geometry. We have generated a complete 4D map of early Arabidopsis embryogenesis and used computational analysis to demonstrate that several divisions follow a rule that uses the smallest wall area going through the center of the cell. In other cases, however, cell division clearly deviates from this rule, which invariably leads to asymmetric cell division. By analyzing mutant embryos and through targeted genetic perturbation, we show that response to the hormone auxin triggers a deviation from the “shortest wall” rule. Our work demonstrates that a simple default rule couples division orientation to cell geometry in the embryo and that genetic regulation can create patterns by overriding the default rul
    corecore